## Palladium-Catalyzed Cross-Coupling Reactions of Heterocyclic Silanolates with Substituted Aryl lodides and Bromides

2006 Vol. 8, No. 4 793–795

ORGANIC LETTERS

Scott E. Denmark\* and John D. Baird

Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801

denmark@scs.uiuc.edu.

Received December 30, 2005

ABSTRACT



Sodium silanolates derived from a number of heterocyclic silanols undergo cross-coupling with a variety of aromatic iodides and bromides under mild conditions. In situ deprotonation of the silanols with an equivalent amount of sodium hydride in toluene generates the sodium salt that couples with iodides under the action of  $Pd_2(dba)_3 \cdot CHCl_3$  in good yield at room temperature to 50 °C. The aromatic bromides also couple with these salts under the action of the Pd(I) catalyst 12.

The Pd-catalyzed cross-coupling of organometallic donors including organostannane,<sup>1</sup> -borane,<sup>2</sup> and -zinc<sup>3</sup> reagents is among the most important modern synthetic methods for the formation of carbon–carbon bonds.<sup>4</sup> In recent years, we have developed organosilanols as a new class of donors for a myriad of cross-coupling processes.<sup>5</sup> In addition to the many advantages of organosilanols, we have demonstrated two

mechanistically distinct modes of activation: the classic fluoride-induced couplings<sup>6a</sup> and the couplings promoted by various Bronsted bases (KOSiMe<sub>3</sub>, Cs<sub>2</sub>CO<sub>3</sub>, NaO'Bu, NaH).<sup>6b</sup> The unique advantages of the latter mode are the avoidance of corrosive fluoride sources which are incompatible with silicon protecting groups. More importantly, fluoride-activated coupling is often plagued by protiodemetalation which is a particularly difficult problem for electron-rich heterocyclic coupling partners.

Heterocyclic compounds are of prime importance in pharmaceutical, natural products, and materials chemistry. Unfortunately, the cross-coupling of heterocyclic donors is of only limited utility for many classes of heterocyclic systems.<sup>7</sup> The cross-coupling of electron-rich heterocyclic stannanes typically requires rather forcing conditions, and their inherent toxicity poses a serious drawback.<sup>8</sup> Although

<sup>(1)</sup> Mitchell, T. N. In *Metal-Catalyzed Cross-Coupling Reactions*; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 1, Chapter 3.

<sup>(2) (</sup>a) Miyaura, N. In *Metal-Catalyzed Cross-Coupling Reactions*; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 1, Chapter 2. (b) Suzuki, A. *J. Organomet. Chem.* **1999**, 576, 147–168. (c) Suzuki, A. *Chem. Rev.* **1995**, 95, 2457–2483.

<sup>(3)</sup> Knochel, P.; Calaza, M. I.; Hupe, E. In *Metal-Catalyzed Cross-Coupling Reactions*; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 2, Chapter 11.
(4) Echavarren, A. M.; Cardenas, D. J. In *Metal-Catalyzed Cross-*

<sup>(4)</sup> Echavarren, A. M.; Cardenas, D. J. In *Metal-Catalyzed Cross-Coupling Reactions*; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 1, Chapter 1.

<sup>(5) (</sup>a) Denmark, S. E.; Sweis, R. F. In *Metal-Catalyzed Cross-Coupling Reactions*; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 1, Chapter 4. (b) Denmark, S. E.; Ober, M. H. *Aldrichimica Acta* **2003**, *36*, 75–85. (c) Denmark, S. E.; Sweis, R. F. *Acc. Chem. Res.* **2002**, *35*, 835–846. (d) Denmark, S. E.; Sweis, R. F. *J. Am. Chem. Soc.* **2001**, *123*, 6439–6440.

<sup>(6) (</sup>a) Denmark, S. E.; Sweis, R. F.; Wehrli, D. J. Am. Chem. Soc. 2004, 126, 4865–4875. (b) Denmark, S. E.; Sweis, R. F. J. Am. Chem. Soc. 2004, 126, 4876–4882.

<sup>(7)</sup> The parent indole can be used to prepare 2- or 3-substituted indoles. Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. **2005**, *127*, 8050–8057.

the cross-coupling of arylboronic acids has enjoyed great success, many heterocyclic boronic acids remain problematic as they are unstable to long-term storage and suffer rapid protiodeborylation under reaction conditions.<sup>9</sup> We have recently reported the cross-coupling of *N*-Boc(2-indolyl)-dimethylsilanol (1) with aryl iodides under mild conditions in good yields.<sup>10a</sup> The silanol is a robust, shelf-stable reagent that is ideally suited for the synthesis of 2-substituted indoles. In our hands, the corresponding boronic acid decomposed within days.

The original procedure for the cross-coupling of **1** with iodides required the use of CuI (1.0 equiv) and NaO'Bu (2 equiv) along with Pd<sub>2</sub>(dba)<sub>3</sub>·CHCl<sub>3</sub> (5 mol %).<sup>10a</sup> Under Bronsted base activation, we propose that the cross-coupling proceeds through a key silicon–oxygen–palladium intermediate prior to the transmetalation step.<sup>6b</sup> The activator serves to generate a metal silanolate which then forms a palladium–silanolate complex. The role of CuI in the reaction remains unclear. We hypothesized that if the sodium silanolate was generated by deprotonation with NaH the requisite sodium silanolate would be formed quantitatively without a conjugate acid in the medium.

We were delighted to find that the sodium silanolates generated in situ from NaH were active in the cross-coupling reaction *and that these reactions proceeded smoothly in the absence of CuI*. In the cross-coupling of 4-iodoanisole (**2a**), the previous conditions required heating the reaction at 50 °C for 24 h to furnish the product in 72% yield. Using the in situ formed silanolate, this product is generated in a comparable 68% yield in just 3 h at 80 °C without CuI (Table 1, entry 1).

| Cross-Coupling with Aryl lodides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |               |         |         |           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|---------|---------|-----------|--|--|
| $\begin{array}{c c} & \underset{N \\ Boc}{\overset{Me}{\underset{H}{}}} & \underset{N \\ Boc}{\overset{Me}{\underset{H}{}}} & \underset{N \\ CH}{\overset{Me}{\underset{H}{}}} & \underset{2.Pd_2(dba)_3 \cdot CHCl_3 (5 \text{ mol }\%)}{\overset{Me}{\underset{H}{}} & \underset{N \\ CH}{\overset{N}{\underset{H}{}}} & \underset{N \\ toluene, temp, time \\ 1 \\ & \underset{H \\ H \\ \end{array}} & \underset{R \\ C \\ R \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $ |            |               |         |         |           |  |  |
| entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R          | temp, °C      | time, h | product | yield,ª % |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-OMe      | 80            | 3       | 3a      | 68        |  |  |
| <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $4-CO_2Et$ | $\mathbf{rt}$ | 3       | 3b      | 82        |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-CN       | $\mathbf{rt}$ | 3       | 3c      | 81        |  |  |
| <sup>a</sup> Yield of chromatographed, recrystallized products.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |               |         |         |           |  |  |

Table 1. Formation of Sodium Silanolate Na<sup>+</sup>1<sup>-</sup> in Situ and

Because NaO'Bu can induce transesterification, we surmised that the milder silanolate base would be compatible with ester groups. Indeed, the in situ prepared Na<sup>+</sup>1<sup>-</sup> afforded smooth conversion to the desired product **3b** in 82% yield in 3 h at room temperature (entry 2). Further, the in situ method was compatible with aryl iodides bearing nitrile groups, which were previously problematic when using NaO'Bu, to furnish 3c in 81% yield (entry 3).<sup>10a</sup>

A series of electron-rich heterocyclic 2-silanols were prepared including pyrrolyl (4), thienyl (5), and furyl (6).<sup>11</sup> These silanols were all easily obtained by metalation and trapping with either hexamethylcyclotrisiloxane or trapping with dimethyldichlorosilane followed by aqueous hydrolysis. The *N*-Boc (2-pyrrolyl)dimethylsilanol **4** was chosen for ease of removal of the Boc protecting group.<sup>12,13</sup>

Following the conditions outlined above, **4** coupled smoothly with ethyl 4-iodobenzoate (**2b**) and 2-iodotoluene (**2d**) but required mild heating to effect the cross-coupling of **2a** (Table 2, entries 1–3). Other in situ generated heterocyclic silanolates were also tested. For example, Na<sup>+</sup>5<sup>-</sup> provided the desired cross-coupling products from **2b** and **2d** in 3 h at room temperature; however, **2a** required heating to effect complete conversion (entry 4). Furylsilanol **6** exhibited enhanced reactivity with **2b**, furnishing the desired product in 1 h in 82% yield. Tolyl derivate **2d** reacted with Na<sup>+</sup>6<sup>-</sup> in a manner similar to that of Na<sup>+</sup>4<sup>-</sup> and afforded **9d** in 61% yield in 3 h. Surprisingly, the cross-coupling of **2a** with Na<sup>+</sup>6<sup>-</sup> proved challenging and required a catalytic amount of (2-furyl)<sub>3</sub>As to reach completion (entry 7).

| Table 2.         Cross-Coupling of Heterocyclic Silanols with Aryl         Iodides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                     |               |         |           |           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|---------------|---------|-----------|-----------|--|--|
| $\begin{array}{c} & \underset{N \in \mathcal{M}^{C}}{\overset{M^{C}}{N}} \underset{OH}{\overset{I}{N}} & \underbrace{1. \text{ NaH / toluene}}_{2.\text{Pd}_2(\text{dba})_3} \cdot \text{CHCI}_3 (5 \text{ mol } \%) \\ & \underbrace{1. \text{ NaH / toluene}}_{\text{toluene, temp, time}} & \underbrace{1. \text{ NaH / toluene}}_{\text{toluene}} & $ |               |                                     |               |         |           |           |  |  |
| entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Х             | R                                   | temp, °C      | time, h | product   | yield,ª % |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $N	ext{-Boc}$ | 4-OMe                               | 50            | 36      | 7a        | 72        |  |  |
| <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $N	ext{-Boc}$ | $4\text{-}\mathrm{CO}_2\mathrm{Et}$ | $\mathbf{rt}$ | 3       | 7b        | 76        |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $N	ext{-Boc}$ | 2-Me                                | $\mathbf{rt}$ | 3       | 7d        | 80        |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{S}$  | 4-OMe                               | 80            | 24      | 8a        | 72        |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{S}$  | $4\text{-}\mathrm{CO}_2\mathrm{Et}$ | $\mathbf{rt}$ | 3       | <b>8b</b> | 78        |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{S}$  | 2-Me                                | $\mathbf{rt}$ | 3       | 8d        | 79        |  |  |
| $7^b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0             | 4-OMe                               | 50            | 24      | 9a        | 71        |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0             | $4-CO_2Et$                          | $\mathbf{rt}$ | 1       | 9b        | 82        |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0             | 2-Me                                | rt            | 3       | 9d        | 61        |  |  |

 $^a$  Yield of chromatographed products purified by recrystallization or sublimation.  $^b$  Required the use of 0.2 equiv of (2-furyl)<sub>3</sub>As for complete conversion.

The positive results with aryl iodides encouraged us to investigate the cross-coupling of aryl bromides with in situ

<sup>(8) (</sup>a) Labadie, S. S.; Teng, E. J. Org. Chem. **1994**, 59, 4250. (b) Kang, S.; Baik, T.; Song, S. Synlett **1999**, 327–329.

<sup>(9)</sup> Tyrrell, E.; Brookes, P. Synthesis 2004, 469-483.

<sup>(10)</sup> Denmark, S. E.; Baird, J. D. *Org. Lett.* **2004**, *6*, 3649–3652. See also: (b) Denmark, S. E.; Kallemeyn, J. M. J. Org. Chem. **2005**, *70*, 2839–2842.

<sup>(11)</sup> The synthesis of 2-substituted thiophenes can be achieved from silanes. Nakao, Y.; Imanaka, H.; Sahoo, A. K.; Yada, A.; Hiyama, T. J. Am. Chem. Soc. **2005**, *127*, 6952–6953.

<sup>(12)</sup> The corresponding *N*-Boc(2-pyrrolyl)boronic acid is a poor substrate for cross-coupling reactions as it suffers from rapid protodeborylation and also undergoes a competing homodimerization. Johnson, C. N.; Stemp, G.; Anand, N.; Stephen, S. C.; Gallagher, T. *Synlett* **1998**, 1025–1027.

<sup>(13)</sup> Cross-coupling reactions of 2-thienyl- and 2-furylboronic acids typically employ 2.0 equiv of the boronic acids. Kondolff, I.; Doucet, H.; Santelli, M. *Synlett* **2005**, 2057–2061.

generated sodium silanolates. For optimization studies, we chose Na<sup>+</sup>5<sup>-</sup> and 4-bromoanisole (**10a**) as the electrophile. Initial conditions using Pd<sub>2</sub>(dba)<sub>3</sub>·CHCl<sub>3</sub> (5 mol %) were unsuccessful, so we surveyed several Pd sources with 1,1-di-*tert*-butylphosphinobiphenyl **11** at 50 °C which has been successfully employed with aryl bromides in other cross-coupling studies within our group.<sup>14</sup>

Disappointingly,  $PdCl_2$  and  $PdBr_2$  did not catalyze the cross-coupling of **6** with **10a** in the presence of **11** (Table 3, entries 1–3). The use of an allylpalladium chloride dimer in conjunction with **11** brought about complete conversion in 3 h, although the desired arene **8a** was accompanied with 11% of the homocoupling product (entry 4). The Pd(I) catalyst **12**, which has been shown to be a highly active Pd source for the cross-coupling of arylboronic acids, afforded clean conversion to **8a** within 3 h without the formation of the homocoupling side product (entry 5).<sup>15</sup> Furthermore, the loading of **12** can be decreased to 2.5 mol % with no loss in activity.

**Table 3.** Catalyst and Ligand Optimization for theCross-Coupling of Aryl Bromide 10a with Na<sup>+</sup>5<sup>-</sup>

| Me Me 2. Pd source (10 mol %)<br>S OH 3. 10a<br>5 t-Bu₂(biphenyl)P (11)<br>toluene, 50 °C |                          |                            | (t-Bu) <sub>3</sub> PPd <sup>CI</sup> PdP(t-Bu) <sub>3</sub><br>12 Me |                    |  |
|-------------------------------------------------------------------------------------------|--------------------------|----------------------------|-----------------------------------------------------------------------|--------------------|--|
| entry                                                                                     | Pd source                | ligand, <sup>a</sup> mol % | time, h                                                               | conversion, $\%^b$ |  |
| 1                                                                                         | $PdCl_2$                 | 10                         | 12                                                                    | trace              |  |
| 2                                                                                         | $PdBr_2$                 | 10                         | 12                                                                    | 4                  |  |
| 3                                                                                         | $PdBr_2$                 | 20                         | 24                                                                    | trace              |  |
| 4                                                                                         | [allylPdCl] <sub>2</sub> | 20                         | 3                                                                     | $100^c$            |  |
| 5                                                                                         | Pd(I) catalyst           | 0                          | 3                                                                     | 100                |  |

<sup>*a*</sup> Employed 1,1-di-*tert*-butylphosphinobiphenyl as an additive. <sup>*b*</sup> Area % by GC analysis. <sup>*c*</sup> Accompanied with 11% of the product of aryl bromide homocoupling, as determined by <sup>1</sup>H NMR analysis.

The cross-coupling of Na<sup>+</sup>5<sup>-</sup> and Na<sup>+</sup>6<sup>-</sup> proceeded smoothly with a range of aryl bromides providing the desired products in moderate to good yields (Table 4). Most reactions were complete within 3 h, although the cross-coupling of 1-bromonaphthalene was slower requiring 7 and 6 h to reach completion for Na<sup>+</sup>5<sup>-</sup> and Na<sup>+</sup>6<sup>-</sup>, respectively. However, the cross-coupling of Na<sup>+</sup>6<sup>-</sup> with **10a** stalled at 78% conversion to give the product in 66% yield (entry 7).<sup>16</sup>

To corroborate our hypothesis that the sodium silanolate is the active silicon intermediate, we prepared  $Na^+1^-$  and tested its competence under the reaction conditions. Adding a hexane solution of 1 to a stirred suspension of 1.0 equiv of NaH in toluene afforded a white precipitate whose identity was confirmed by NMR and HRMS as Na<sup>+</sup>1<sup>-</sup>. The salt was a stable, free-flowing white powder. We were pleased to find that this reagent possessed reactivity similar to that for the in situ prepared silanolate in reaction with 2b and Pd<sub>2</sub>(dba)<sub>3</sub>. CHCl<sub>3</sub> to afford **3b** in 76% yield. The other silanolates,  $Na^+5^-$  and  $Na^+6^-$ , were prepared analogously but were formed as stable waxes which were nonetheless still easily manipulated. The cross-coupling of  $Na^+5^-$  and  $Na^+6^-$  with **2b** and Pd<sub>2</sub>(dba)<sub>3</sub>•CHCl<sub>3</sub> gave the desired products in 87% and 79% yields, respectively. Storing the active silicon species as the sodium salt provides two advantages. First, the reaction procedure is simplified by only having to charge the active silanolate into the reaction vessel instead of adding both the silanol and the activator. Second, the dimerization of silanols to their corresponding disiloxanes<sup>17</sup> is prevented by storing the sodium salts.

| Table 4. | Cross-Coupling | of | Silanolates | with | Substituted | Aryl |
|----------|----------------|----|-------------|------|-------------|------|
| Bromides |                |    |             |      |             |      |

| $\begin{array}{c} \begin{array}{c} \begin{array}{c} Me & Me & 1. & NaH \ / \ toluene \\ Si & 2.12 \ (2.5 \ mol \ \%) \\ OH & toluene, \ 50 \ ^{\circ}C \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $ |              |                                     |         |           |           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------|---------|-----------|-----------|--|--|
| entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Х            | R                                   | time, h | product   | yield,ª % |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{S}$ | 4-OMe                               | 3       | 8a        | 71        |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{S}$ | $4\text{-}\mathrm{CO}_2\mathrm{Et}$ | 3       | 8b        | 67        |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{S}$ | 4-CN                                | 3       | 8c        | 78        |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{S}$ | 2-Me                                | 3       | 8d        | 77        |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{S}$ | $4-CF_3$                            | 3       | <b>8e</b> | 86        |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{S}$ | b                                   | 7       | <b>8f</b> | 74        |  |  |
| $7^c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0            | 4-OMe                               | 6       | 9a        | 66        |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0            | $4\text{-}\mathrm{CO}_2\mathrm{Et}$ | 3       | 9b        | 60        |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0            | 4-CN                                | 3       | 9c        | 73        |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0            | 2-Me                                | 3       | 9d        | 71        |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0            | $4-CF_3$                            | 3       | 9e        | 71        |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0            | b                                   | 6       | 9f        | 69        |  |  |

 $^a$  Yield of chromatographed products purified by sublimation.  $^b$  1-Bromonaphthalene.  $^c$  Reaction stalled at 78% conversion.

In conclusion, we have developed a simplified and general procedure for the cross-coupling of in situ generated and isolated heterocyclic silanolates with aryl iodides and bromides. Extension to more complex heterocycles is in progress.

Acknowledgment. We are appreciative for generous financial support from the National Institutes of Health (R01GM61738). J. D. B. acknowledges the University of Illinois for a graduate fellowship.

Supporting Information Available: Preparation of Na<sup>+</sup>1<sup>-</sup> and all sodium silanolates, detailed experimental procedures, and full characterization of all products. This material is available free of charge via the Internet at http://pubs.acs.org.

## OL053165R

(17) Lickiss, P. D. Adv. Inorg. Chem. 1995, 42 147-262.

<sup>(14)</sup> Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550-9561.

<sup>(15) (</sup>a) Weissman, H.; Ray, C. R.; Elliott, E. L.; Moore, J. S. *Adv. Synth. Catal.*, submitted for publication. (b) Weissman, H.; Shimon, L. J.; Milstein, D. *Organometallics* **2004**, *23*, 3931–3940.

<sup>(16)</sup> The cross-coupling of the *N*-Boc-(2-indolyl)- and (2-pyrrolyl)dimethylsilanols with arylbromides was unsuccessful. Significant amounts of phenol were observed when the reactions were run at 80 °C. We believe the phenol is derived from a competing reductive elimination to form a dimethylsilyl ether that is hydrolyzed upon aqueous workup.